

The Golden Rule: Let the stream act like a stream

Stream-Smart Options

- 1) Avoid creating a crossing
- 2) Remove the crossing
- 3) Open bottom structure that spans or exceeds channel
 - Abutments for temporary bridge
 - Bridge
 - Arch culvert
 - 3-sided box culvert
- 4) Embedded culvert
- 5) Hydraulic designs

Open bottom structures

Temporary Bridge Deck

Bridge

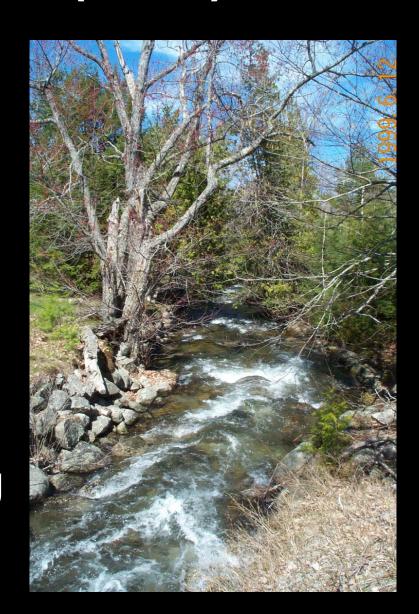
Bottomless Box Culvert

Arch Culvert

Embedded pipes

Embedded box culvert

Liners don't achieve stream-smart outcomes!

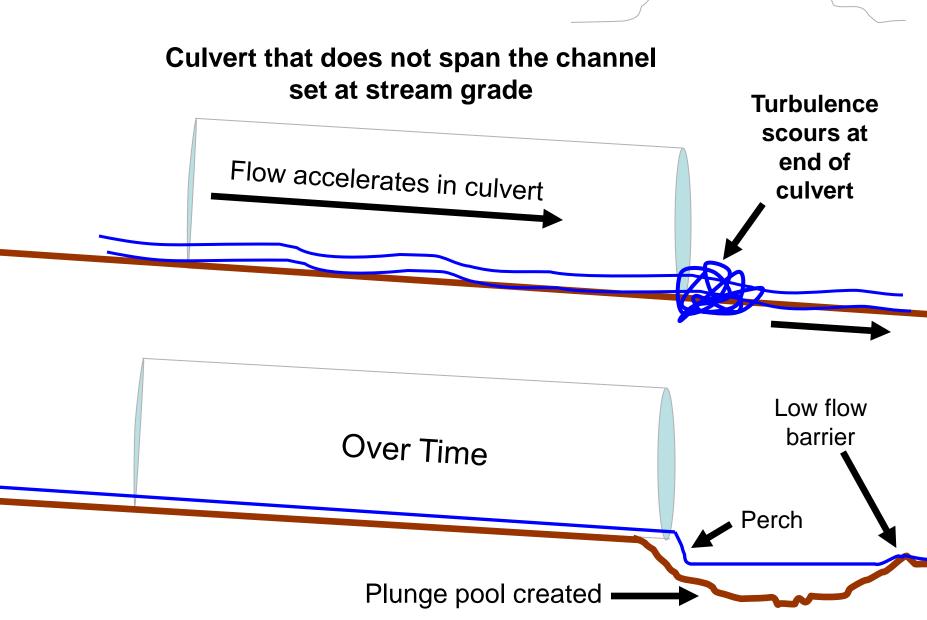

Rules of Thumb (4 S's)

Span the stream

Set elevation right

Slope matches stream

Substrate in the crossing

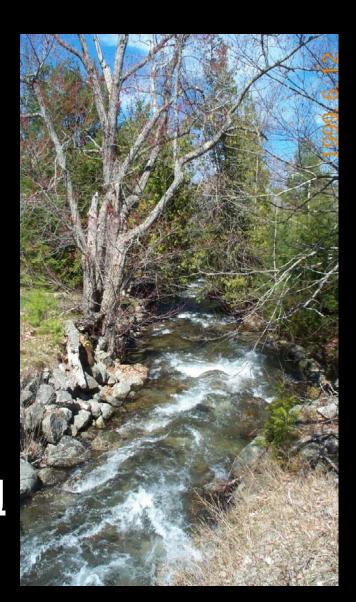


Don't pinch the stream

How undersized culverts constrict stream flow and become perched

Real World - Blanchard

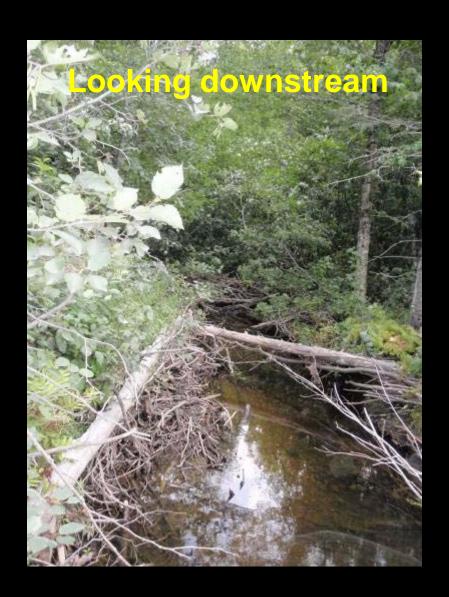
2008 2010


Rules of Thumb (4 S's)

Span the stream

Set elevation right

Slope matches stream

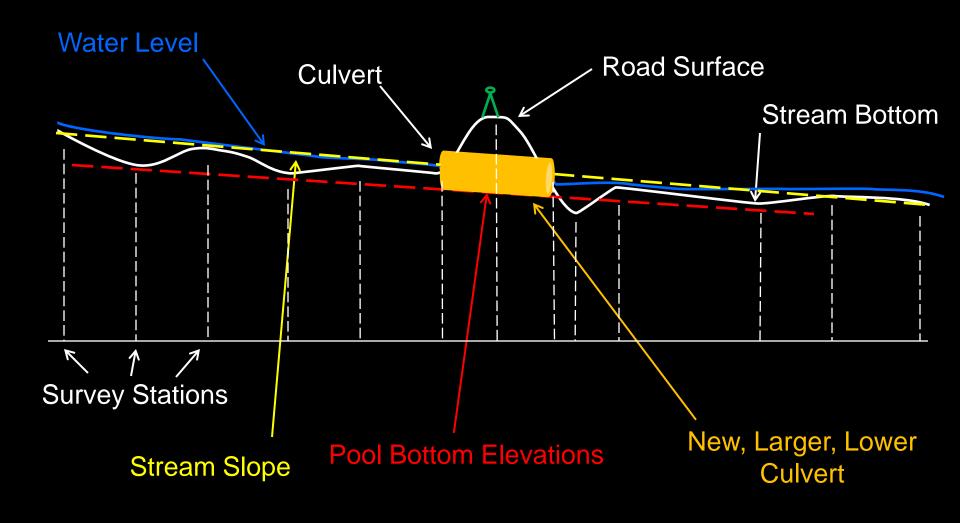

Substrate in the crossing

Set elevation right

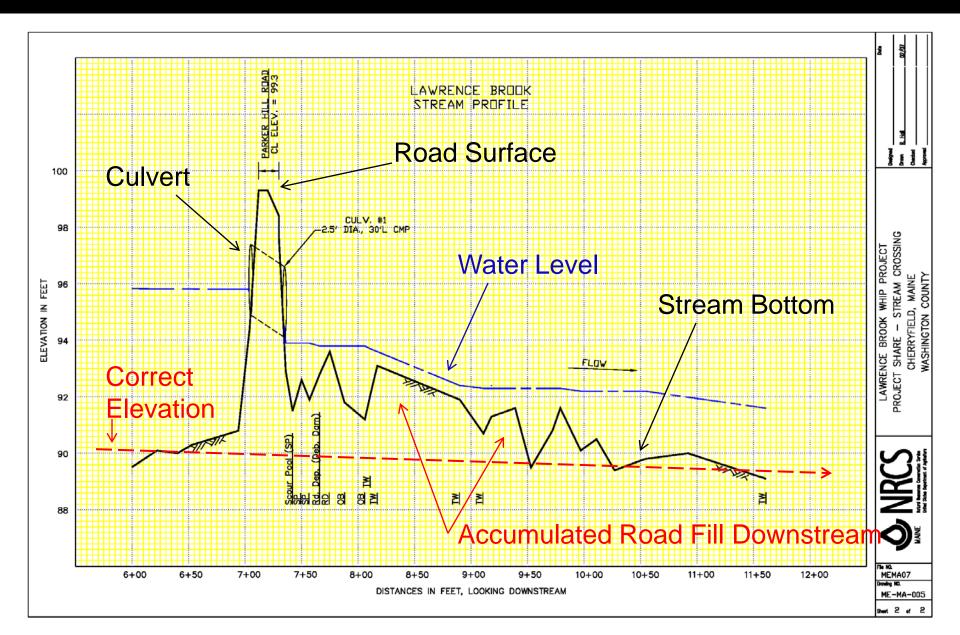
Indicators of elevation problems

A stream channel rediscovered!

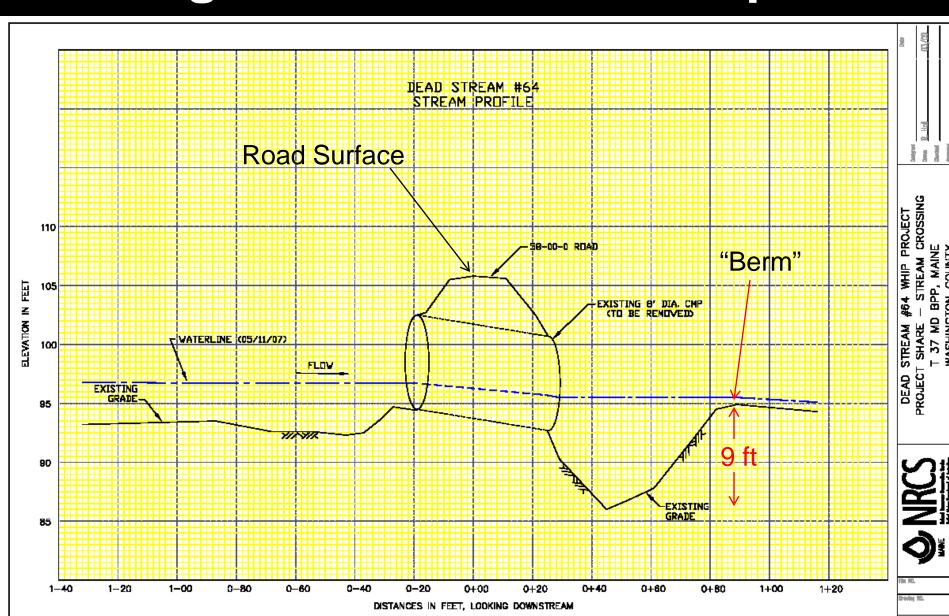
Indicators of correct elevation



Seamless inlets and outlets



Longitudinal Profile


Used to find correct elevation and slope

Longitudinal Profile Example 1

Longitudinal Profile Example 2

Substrate in the crossing

Stream-Smart Sizing

Step 1: Planning

Flow Volume

Species of concern

Step 2: Sizing

For spanning stream and Flow

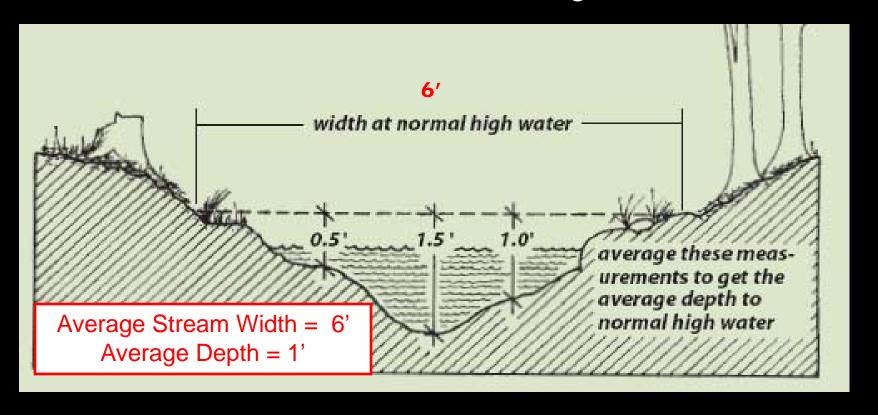
Field Method

Hydrologic Method

Step 1 (For Sizing)

What volume of flow are we allowing for?

25-, 50-, 100- or 150-year storm event?


What species are we concerned about?

Fish, amphibians, mammals, invertebrates?

Step 2: Field Method

Determine the Opening size needed

Measure both upstream and downstream of crossing in an undisturbed location, and average measurements

Step 2: Hydrologic Method

-35	25-yr	14'1" X 6'2" X 28' CM Box Culvert		
Frequency	Discharge	Elevation	Velocity ¹	
yrs	cfs	ft	ft/sec	
10	130	87.6	2.7	
25	200	88.5	3.3	
1 Velocity thro	ugh culvert of	pening.		

Tip: In most situations the width of the opening for a bridge or culvert should be at least as wide as the stream channel at normal high watermark. Sizing a crossing only based on the 10 or 25 year flood (see page 46-47) may not always accomplish this goal.

Design the crossing to meet the required opening size and account for embedding

Table C Culvert Diameter and Opening Sizes				
Opening size (sq. ft.)	Diameter (inches)			
0.20	6			
0.80	12			
1.25	15			
1.75	18			
2.40	21			
3.15	24			
4.90	30			
7.05	36			
9.60	42			
12.55	48			
15.90	54			
19.65	60			
23.75	66			
28.26	72			

Stream-Smart Design: 3X cross section (25-year flood): → Stream width = 6 ft → Average stream depth = 1 ft →Opening size = 18 sq ft Table C (Round Culverts): →Opening Size >= 18 sq ft = 23.75 sq ft →Culvert Diameter = 66 in →* Less than stream width, so select next size up = 72 inAllows Embedding (28.26 - 18 = 10.26 sq ft)up to 35% of opening size

Consider alternatives: Pipe Arch

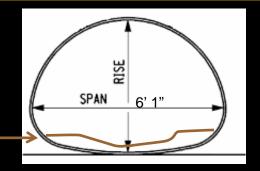
Pipe Arch Equivalents

DIAMETER	EQUIV. ARCH SIZE
48"	53" x 41"
54"	60" x 46"
60'	66" x 51"
→ 66"	73" x 55"
72"	81" x 59"
78"	87" x 63"
84"	95" x 67"
90"	103" x 71"
96"	112" x 75"
102"	117" x 79"
108"	128" x 83"
114"	137" x 87"
120"	142" x 91"
125"	150" x 96"
132"	157" x 101"
138"	164" x 105"
144"	171" x 110"

Stream-Smart Design:

3X cross section (25-year flood):

Stream width = 6 ft


Average stream depth = 1 ft

Opening size = 18 sq ft

Table C (Round Culverts):

Opening Size >= 18 sq ft = 23.75 sq ft Culvert Diameter = 66 in

- ➤ Equivalent Pipe Arch = 73 in x 55 in
- → Allows Embedding (23.75 18 = 5.75 sq ft)I 16% of opening size

Consider alternatives: Open Bottom Arch

Dimens	ions		
Span, Feet	Ríse, Fiin.	Waterway Area Ft. ²	Rise/Span Ratio
6.0	1-10	7.9	0.30
	2-4	10.0	0.38
	3-2	15.0	0.53
→ 7.0	2-5	12.0	0.34
	2-10	15.0	0.41
	3-8	20.0	0.52
8.0	2-11	17.0	0.36
	3-4	20,0	0.42
	4-2	26.6	0.52
9.0	2-11	19,0	0.33
	3-11	26.5	0.43

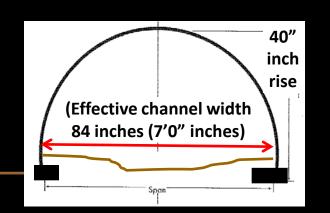
Stream-Smart Design:

3X cross section (25-year flood):

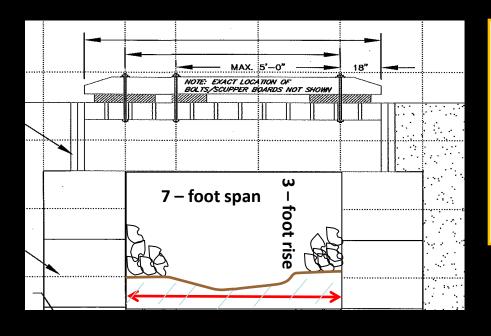
Stream width = 6 ft

Average stream depth = 1 ft

Opening size = 18 sq ft


Table C (Round Culverts):

Opening Size >= 18 sq ft = 20 sq ft


Culvert Diameter = 66 in

7' x 3'8" Open Bottom Arch

Allows Footer Embedding (20 − 18 = 2 sq ft)

Consider alternatives: Small bridge

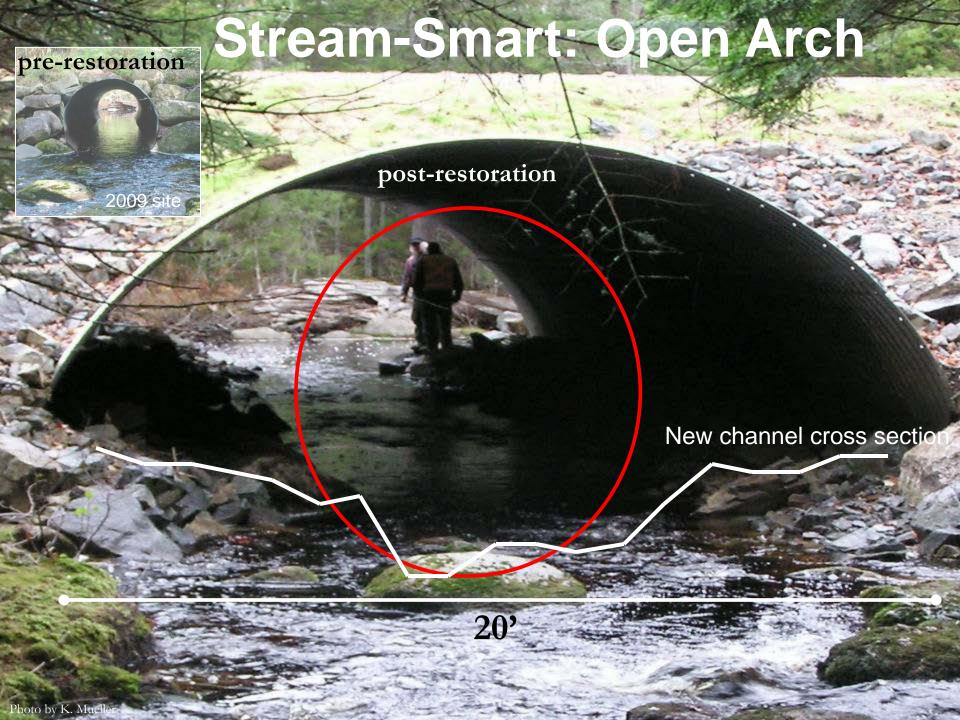
Stream-Smart Design:

3X cross section (25-year flood):

Stream width = 6 ft

Average stream depth = 1 ft

Opening size = 18 sq ft


Opening Size >= 18 sq ft = 21 sq ft

Culvert Diameter = 66 in

7' x 3' Bridge

Comparison of Road-Stream Crossing Structures

Crossing Structure Type	Material	Cost	Life Span (years)	Advantages	Disadvantages
Bridge A	Steel-reinforced concrete abutments (poured in-place) and decking on steel I-beam stringers	\$\$\$	50-75	Natural bottom, durability, snow-plowable	High cost
Bridge B	Waste-block concrete abutments with steel I-beam stringers and timber deck (possibly paved or alternate decking)	\$	50-75; timber redeck 5-10	Natural bottom, low cost; simplicity	Limited abutment height; snow plowing limited
Bridge C (3-Sided Box Culvert)	Steel-reinforced concrete, galvanized steel or aluminum	\$\$	50-75	Natural bottom, simplicity	Weight of concrete structures can limit installation options
Open Bottom Arch	Galvanized Steel, aluminum, steel- reinforced concrete	\$\$	50-75	Natural bottom, ease of transport, can be low profile	Care must be taken to install and protect footings, assembly required for metal plate structures
Embedded Box Culvert	Steel-reinforced concrete, galvanized steel, aluminum	\$\$	50-75	Natural bottom if spans stream; variety of configurations	Must span stream and be set below stream elevation to avoid outlet perch
Embedded Pipe Arch	Galvanized steel, steel-reinforced concrete	\$ - \$\$	20-75	Natural bottom if spans stream; wide for given volume; low cost of steel	Steel short life span; not for use with ledge
Embedded Round Pipe	Galvanized steel, plastic, steel- reinforced concrete	\$	20-75	Natural bottom if spans stream; lowest cost	Limited to smaller sizes; not for use with ledge
Round Pipe (at stream grade) Not Recommended	Galvanized steel, plastic, steel- reinforced concrete	\$	20-75	Lowest cost	Rarely adequate for fish passage (develops outlet perch); limited to smaller sizes

Stream-Smart: Small bridge on low volume road

Stream-Smart: Embedded Box Culvert

Before After

Design & Installation Considerations

Controlling Water

When might you seek help?

Rules of Thumb (4 S's)

Span the stream

Set elevation right

Slope matches stream

Substrate in the crossing

The Golden Rule: Let the stream act like a stream